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Big Data in ScienceBig Data in Science


 

Data growing exponentially, in all science


 

All science is becoming data-driven


 

This is happening very rapidly


 

Data becoming increasingly open/public


 

Non-incremental!


 

Convergence of physical and life sciences 
through Big Data (statistics and computing)



 

The “long tail”

 

is important


 

A scientific revolution in how discovery takes place

 
=> a rare and unique opportunity



Scalable DataScalable Data--Intensive AnalysisIntensive Analysis



 

Large data sets => data resides on hard disks


 

Analysis has to move to the data


 

Hard disks are becoming sequential devices
◦

 

For a PB data set you cannot use a random access pattern


 

Analyses and visualization become streaming problems


 

Same thing is true with searches
◦

 

Massively parallel sequential crawlers (MR, Hadoop, etc)


 

Indexing needs to be maximally sequential
◦

 

Space filling curves (Peano-Hilbert, Morton,…)


 

Need streaming versions of our algorithms



Sloan Digital Sky SurveySloan Digital Sky Survey


 

“The Cosmic Genome Project”


 

Two surveys in one
◦

 

Photometric survey in 5 bands
◦

 

Spectroscopic redshift survey



 

Data is public
◦

 

2.5 Terapixels of images => 5 Tpx
◦

 

10 TB of raw data => 120TB processed
◦

 

0.5 TB catalogs => 35TB in the end



 

Started in 1992, finished in 2008


 

Data volume enabled by 
Moore’s Law, Kryder’s Law



SkyServerSkyServer



 

Prototype in 21st Century data access
◦

 

One billion web hits in 10 years
◦

 

4,000,000 distinct users vs. 15,000 astronomers
◦

 

The emergence of the “Internet scientist”
◦

 

The world’s  most used astronomy facility today
◦

 

Collaborative server-side analysis done



MyDB: WorkbenchMyDB: Workbench


 

Registered ‘power users’, with their own server-side DB (Nolan Li)


 

Query output goes to ‘MyDB’


 

Can be joined with source database (contexts) or with other tables


 

Results are materialized from MyDB upon request


 

Users can collaborate!
◦

 

Insert, Drop, Create, Select  Into, Functions, Procedures

◦

 

Publish/share

 

their tables to a group area

◦

 

Flexibility “at the edge”/ Read-only big DB



 

Data delivery via Web Services
=> Sending analysis to the data!



What is Different about DataWhat is Different about Data--Intensive?Intensive?


 

Data is hard (and costly) to move


 

Data locality is the key!


 

Typical data analysis scenarios are hierachical


 

At least the first stage requires data filtering/censoring/extraction
◦

 

Usually very low cycles/byte of data 



 

Amdahl (1965):  Laws for a balanced system
i.

 

Parallelism: max speedup is S/(S+P)
ii.

 

One bit of IO/sec per instruction/sec (BW)
iii.One byte of memory per one instruction/sec (MEM)



Typical Amdahl NumbersTypical Amdahl Numbers

Modern multi-core systems move farther away from Amdahl’s Laws 
(Bell, Gray and Szalay 2006)



Amdahl Numbers for Data SetsAmdahl Numbers for Data Sets

Data Analysis



Data Sizes InvolvedData Sizes Involved



Data in HPC SimulationsData in HPC Simulations


 

HPC is an instrument in its own right


 

Largest simulations approach petabytes
◦

 

from supernovae to turbulence, biology and brain modeling


 

Need public access to the best and latest sims

 
through interactive numerical laboratories



 

Creates new challenges in how to:
◦

 

Move the petabytes of data (high speed networking)
◦

 

Interface (virtual sensors, immersive analysis)
◦

 

Look at it (render on top of the data, drive remotely)
◦

 

Analyze (algorithms, scalable analytics)
◦

 

Support and archive (long term strategies)



Usage Scenarios for Simulation OutputsUsage Scenarios for Simulation Outputs



 

On-the fly analysis (immediate)


 

Private reuse (short/mid term)


 

Public reuse (mid term)


 

Public service portal (mid/long term)


 

Archival and curation (long term)



Silver River Network TransferSilver River Network Transfer



 

Simulation run on Jaguar


 

150TB in less than 10 days from Oak Ridge to JHU using a dedicated 10G connection



Immersive TurbulenceImmersive Turbulence
“…

 

the last unsolved problem of classical physics…”

 

Feynman



 

Understand the nature of turbulence
◦

 

Consecutive snapshots of a large 
simulation of turbulence:

 

now 30 Terabytes
◦

 

Treat it as an experiment, play

 

with

 

the database! 
◦

 

Shoot test particles (sensors) from 
your laptop into the simulation,

 

like in the movie Twister
◦

 

Next: 70TB MHD simulation



 

New paradigm for analyzing simulations!

with C. Meneveau (Mech. E), G. Eyink (Applied Math), R. Burns (CS)



Typical Daily UsageTypical Daily Usage

2011: exceeded 100B points publicly delivered



Spatial queries, random samplesSpatial queries, random samples


 

Spatial queries require multi-dimensional indexes.


 

(x,y,z) does not work: need discretisation
◦

 

index on (ix,iy,iz) with ix=floor(x/8) etc



 

More sophisticated: space filling curves
◦

 

bit-interleaving/octree/Z-Index
◦

 

Peano-Hilbert curve
◦

 

Need custom functions for range and volume queries
◦

 

Plug in modular space filling library (Budavari)



Cosmological SimulationsCosmological Simulations

In 2000 cosmological simulations had 1010

 

particles 
and produced over 30TB of data (Millennium)



 

Build up dark matter halos


 

Track merging history of halos


 

Use it to assign star formation history


 

Combination with spectral synthesis


 

Realistic distribution of galaxy types


 

More than 1,000 CASJobs/MyDB users
Today: simulations with 1012

 

particles and PB of output are under way 
(MillenniumXXL, Silver River, Exascale Sky) 
but there is not enough disk space to store the output!



The Milky Way LaboratoryThe Milky Way Laboratory


 

Cosmology simulations as immersive laboratory for general users


 

Via Lactea-II (20TB) as prototype, then Silver River (50B particles) as 
production (50M CPU hours)



 

800+ hi-rez snapshots (2.6PB) => 1PB in DB


 

Users can insert test particles (dwarf galaxies) into the system

 

and follow trajectories in pre-computed simulation


 

Compute dark matter annihilation maps interactively


 

Users will interact remotely with a PB in ‘real time’

Madau, Rockosi, Szalay, Wyse, Silk, Stadel, 
Kuhlen, Lemson, Westermann, Blakeley



Visualizing PetabytesVisualizing Petabytes


 

Send the rendering to the data …


 

It is easier to send a HD 3D video stream to the user

 
than all the data 



 

Interactive visualizations driven remotely


 

Visualizations are becoming IO limited


 

It is possible to build individual servers with extreme data rates 


 

Prototype on turbulence simulation already works:

 
data streaming directly from DB to GPU



 

N-body simulations next



Current DataCurrent Data--Intensive Projects at JHUIntensive Projects at JHU

Discipline data [TB]
Astrophysics 930
HEP/Material Sci. 394
CFD 425
BioInformatics 414
Environmental 660
Total 2823
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19 projects total proposed, more coming, 
data lifetimes between 3 mo and 3 yrs



Tradeoffs for Data AnalysisTradeoffs for Data Analysis
Today, we have no good and cheap architecture for large scale data 

analysis

Extreme computing is about tradeoffs
---

 

Stu Feldman
Ordered priorities for data-intensive scientific computing

1.

 

Total storage (-> low redundancy)
2.

 

Cost

 

(-> total cost vs price of raw disks)
3.

 

Sequential IO (-> locally attached disks, fast ctrl)
4.

 

Fast streams

 

(->GPUs inside server)
5.

 

Low power (-> slow normal CPUs, lots of disks/mobo)



IdeaIdea


 

Data analysis: we need a fast scanning engine!
◦

 

Users can park hundreds of TBs of data for months (but not permanent)
◦

 

Two tiered architecture for split functionalities (analysis vs checkpointing)
◦

 

Overall, minimize costs as possible, only use free SW
◦

 

Use as fast an interconnect as possible
◦

 

Build a BeoWulf-like template that can be replicated at other institutions


 

Performance/analysis tier
◦

 

Sacrifice distributed file system for locally attached storage with share nothing
◦

 

Maximize data streaming from disk to GPU (5GBytes/sec nodes)


 

Storage tier
◦

 

Provide truly inexpensive large storage for checkpointing($70K/PB)
◦

 

Maximize recovery from network
=>   JHU Data-Scope



DataData--Scope SpecsScope Specs

Revised
1P 1S All P All S Full

servers 1 1 90 6 102
rack units 4 34 360 204 564
capacity 24 720 2160 4320 6480 TB
price 8.8 57 8.8 57 792 $K
power 1.4 10 126 60 186 kW
GPU* 1.35 0 121.5 0 122 TF
seq IO 5.3 3.8 477 23 500 GBps
IOPS 240 54 21600 324 21924 kIOPS
netwk bw 10 20 900 240 1140 Gbps

* Without the GPU costs (it is about $1,600/ card)



Network ArchitectureNetwork Architecture



 

Arista Networks switches (10G, copper and SFP+)


 

5x 7140T-8S for the Top of the Rack (TOR) switches


 

40 CAT6, 8 SFP+



 

7050-S64 for the core


 

64x SFP+, 4x QSFP+ (40G)



 

Fat-tree architecture


 

Uplink to Cisco Nexus 7K
◦

 

2x100G card
◦

 

6x40G card

Nexus 7K

7050-S64

7148
7148

7148
7148
7140T-8S

40G (twinax)

80G

100G



Increased DiversificationIncreased Diversification
One shoe does not fit all!


 

Diversity grows naturally, no matter what


 

Evolutionary pressures help


 

Individual groups want 
specializations



 

Large floating point calculations move to GPUs


 

Big data moves into a cloud (private or public)


 

RandomIO moves to Solid State Disks


 

High-Speed stream processing emerging


 

noSQL vs databases vs column store vs SciDB …



 

Large floating point calculations move to GPUs


 

Big data moves into a cloud (private or public)


 

RandomIO moves to Solid State Disks


 

High-Speed stream processing emerging


 

noSQL vs databases vs column store vs SciDB …At the same time
•

 

What remains in the middle?

•

 

Common denominator is Big Data
•

 

Data management

•

 

Everybody needs it, nobody enjoys doing it
•

 

We are still building our own…
over and over…



The Long TailThe Long Tail


 

The “Long Tail”

 

of a huge number of small data sets
◦

 

The integral of the “long tail”

 

is big!



 

Facebook:   bring many small, seemingly unrelated data 
to a single cloud and new value emerges
◦

 

What is the science equivalent?



 

The DropBox lesson
◦

 

Simple interfaces are much more powerful than complex ones
◦

 

API public



SociologySociology



 

Broad sociological changes
◦

 

Convergence of Physical and Life Sciences
◦

 

Data collection in ever larger collaborations 
◦

 

Virtual Observatories: CERN, VAO, NCBI, NEON, OOI,…
◦

 

Analysis decoupled, off archived data by smaller groups
◦

 

Emergence of  the citizen/internet scientist



 

Need to start training the next generations
◦

 

П-shaped vs I-shaped people
◦

 

Early involvement in “Computational thinking”



SummarySummary


 

Science is increasingly driven by data (large and small)


 

Large data sets are here, COTS solutions are not


 

Analyzing large data requires a different approach


 

We need new instruments: “microscopes & telescopes”

 

for data


 

Changing sociology


 

From hypothesis-driven to data-driven science


 

Same problems present in HPC data


 

A new, Fourth Paradigm of Science is emerging…
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