Extreme Data-Intensive Scientific Computing

Alexander Szalay JHU

Big Data in Science

- Data growing exponentially, in all science
- All science is becoming data-driven
- This is happening very rapidly
- Data becoming increasingly open/public
- Non-incremental!
- Convergence of physical and life sciences through Big Data (statistics and computing)
- The "long tail" is important
- A scientific revolution in how discovery takes place
 => a rare and unique opportunity

Scalable Data-Intensive Analysis

- Large data sets => data resides on hard disks
- Analysis has to move to the data
- Hard disks are becoming sequential devices
 - For a PB data set you cannot use a random access pattern
- Analyses and visualization become streaming problems
- Same thing is true with searches
 - Massively parallel sequential crawlers (MR, Hadoop, etc)
- Indexing needs to be maximally sequential
 - Space filling curves (Peano-Hilbert, Morton,...)
- Need streaming versions of our algorithms

Sloan Digital Sky Survey

- "The Cosmic Genome Project"
- Two surveys in one
 - Photometric survey in 5 bands
 - Spectroscopic redshift survey
- Data is public
 - 2.5 Terapixels of images => 5 Tpx
 - 10 TB of raw data => 120TB processed
 - 0.5 TB catalogs => 35TB in the end
- Started in 1992, finished in 2008
- Data volume enabled by Moore's Law, Kryder's Law

SkyServer

- Prototype in 21st Century data access
 - One billion web hits in 10 years
 - 4,000,000 distinct users vs. 15,000 astronomers
 - The emergence of the "Internet scientist"
 - The world's most used astronomy facility today
 - Collaborative server-side analysis done

MyDB: Workbench

- Registered 'power users', with their own server-side DB (Nolan Li)
- Query output goes to 'MyDB'
- Can be joined with source database (contexts) or with other tables
- Results are materialized from MyDB upon request
- Users can collaborate!
 - Insert, Drop, Create, Select Into, Functions, Procedure⁷⁰⁰⁰
 - **Publish/share** their tables to a group area
 - Flexibility "at the edge"/ Read-only big DB
- Data delivery via Web Services
- => Sending analysis to the data!

What is Different about Data-Intensive?

- Data is hard (and costly) to move
- Data locality is the key!
- Typical data analysis scenarios are hierachical
- At least the first stage requires data filtering/censoring/extraction
 - Usually very low cycles/byte of data
- Amdahl (1965): Laws for a balanced system
 - i. Parallelism: max speedup is S/(S+P)
 - ii. One bit of IO/sec per instruction/sec (BW)
 - iii. One byte of memory per one instruction/sec (MEM)

Typical Amdahl Numbers

System	CPU	GIPS	RAM	disklO	Amdahl	
	count	[GHz]	[GB]	[MB/s]	RAM	10
BeoWulf	100	300	200	3000	0.67	0.08
Desktop	2	6	4	150	0.67	0.2
Cloud VM	1	3	4	30	1.33	0.08
SC1	212992	150000	18600	16900	0.12	0.001
SC2	2090	5000	8260	4700	1.65	0.008
GrayWulf	416	1107	1152	70000	1.04	0.506

Modern multi-core systems move farther away from Amdahl's Laws (Bell, Gray and Szalay 2006)

Amdahl Numbers for Data Sets

Data Sizes Involved

Data in HPC Simulations

- HPC is an instrument in its own right
- Largest simulations approach petabytes
 - from supernovae to turbulence, biology and brain modeling
- Need public access to the best and latest sims through interactive numerical laboratories
- Creates new challenges in how to:
 - Move the petabytes of data (high speed networking)
 - Interface (virtual sensors, immersive analysis)
 - Look at it (render on top of the data, drive remotely)
 - Analyze (algorithms, scalable analytics)
 - Support and archive (long term strategies)

Usage Scenarios for Simulation Outputs

- On-the fly analysis (immediate)
- Private reuse (short/mid term)
- Public reuse (mid term)
- Public service portal (mid/long term)
- Archival and curation (long term)

Silver River Network Transfer

- Simulation run on Jaguar
- 150TB in less than 10 days from Oak Ridge to JHU using a dedicated 10G connection

Immersive Turbulence

"... the last unsolved problem of classical physics..." Feynman

- Understand the nature of turbulence
 - Consecutive snapshots of a large simulation of turbulence: now 30 Terabytes
 - Treat it as an experiment, play with the database!
 - Shoot test particles (sensors) from your laptop into the simulation, like in the movie Twister
 - Next: 70TB MHD simulation
- New paradigm for analyzing simulations!

Typical Daily Usage

Turbulence Database Usage by Day

2011: exceeded 100B points publicly delivered

Spatial queries, random samples

- Spatial queries require multi-dimensional indexes.
- (x,y,z) does not work: need discretisation
 - index on (ix,iy,iz) with ix=floor(x/8) etc
- More sophisticated: space filling curves
 - bit-interleaving/octree/Z-Index
 - Peano-Hilbert curve
 - Need custom functions for range and volume queries
 - Plug in modular space filling library (Budavari)

Cosmological Simulations

In 2000 cosmological simulations had 10¹⁰ particles and produced over 30TB of data (Millennium)

- Build up dark matter halos
- Track merging history of halos
- Use it to assign star formation history
- Combination with spectral synthesis
- Realistic distribution of galaxy types
- More than I,000 CASJobs/MyDB users

Today: simulations with 10¹² particles and PB of output are under way (MillenniumXXL, Silver River, Exascale Sky) but there is not enough disk space to store the output!

The Milky Way Laboratory

- Cosmology simulations as immersive laboratory for general users
- Via Lactea-II (20TB) as prototype, then Silver River (50B particles) as production (50M CPU hours)
- 800+ hi-rez snapshots (2.6PB) => IPB in DB
- Users can insert test particles (dwarf galaxies) into the system and follow trajectories in pre-computed simulation
- Compute dark matter annihilation maps interactively
- Users will interact remotely with a PB in 'real time'

Madau, Rockosi, Szalay, Wyse, Silk, Stadel, Kuhlen, Lemson, Westermann, Blakeley

Visualizing Petabytes

- Send the rendering to the data ...
- It is easier to send a HD 3D video stream to the user than all the data
- Interactive visualizations driven remotely
- Visualizations are becoming IO limited
- It is possible to build individual servers with extreme data rates
- Prototype on turbulence simulation already works: data streaming directly from DB to GPU
- N-body simulations next

Current Data-Intensive Projects at JHU

Discipline	data [TB]		
Astrophysics	930		
HEP/Material Sci.	394		
CFD	425		
BioInformatics	414		
Environmental	660		
Total	2823		

19 projects total proposed, more coming, data lifetimes between 3 mo and 3 yrs

Tradeoffs for Data Analysis

Today, we have no good and cheap architecture for large scale data analysis

Extreme computing is about tradeoffs --- Stu Feldman

Ordered priorities for data-intensive scientific computing

- Total storage (-> low redundancy)
 Cost (-> total cost vs price of raw disks) 2. Cost
- 3. Sequential IO (-> locally attached disks, fast ctrl)
- 4. Fast streams (->GPUs inside server)
- 5. Low power (-> slow normal CPUs, lots of disks/mobo)

Idea

- Data analysis: we need a fast scanning engine!
 - Users can park hundreds of TBs of data for months (but not permanent)
 - Two tiered architecture for split functionalities (analysis vs checkpointing)
 - Overall, minimize costs as possible, only use free SW
 - Use as fast an interconnect as possible
 - Build a BeoWulf-like template that can be replicated at other institutions
- Performance/analysis tier
 - Sacrifice distributed file system for locally attached storage with share nothing
 - Maximize data streaming from disk to GPU (5GBytes/sec nodes)
- Storage tier
 - Provide truly inexpensive large storage for checkpointing(\$70K/PB)
 - Maximize recovery from network
 - => JHU Data-Scope

Data-Scope Specs

	Revised							
	1P	18	All P	All S	Full			
servers	1	1	90	6	102			
rack units	4	34	360	204	564			
capacity	24	720	2160	4320	6480	ТВ		
price	8.8	57	8.8	57	792	\$K		
power	1.4	10	126	60	186	kW		
GPU*	1.35	0	121.5	0	122	TF		
seq IO	5.3	3.8	477	23	500	GBps		
IOPS	240	54	21600	324	21924	kIOPS		
netwk bw	10	20	900	240	1140	Gbps		

^{*} Without the GPU costs (it is about \$1,600/ card)

Network Architecture

- Arista Networks switches (10G, copper and SFP+)
- 5x 7140T-8S for the Top of the Rack (TOR) switches
 - 40 CAT6, 8 SFP+
- 7050-S64 for the core
 - 64x SFP+, 4x QSFP+ (40G)
- Fat-tree architecture
- Uplink to Cisco Nexus 7K
 - 2x100G card
 - 6x40G card

Increased Diversification

One shoe does not fit all!

- Diversity grows naturally, no matter what
- Evolutionary pressures help
- Individual groups want specializations

- Large floating point calculations move to GPUs
- Big data moves into a cloud (private or public)
- RandomIO moves to Solid State Disks
- High-Speed stream processing emerging
- noSQL vs databases vs column store vs SciDB ...

At the same time

- What remains in the middle?
 - Common denominator is Big Data
- Data management
 - Everybody needs it, nobody enjoys doing it
- We are still building our own...

over and over...

The Long Tail

- The "Long Tail" of a huge number of small data sets
 - The integral of the "long tail" is big!
- Facebook: bring many small, seemingly unrelated data to a single cloud and new value emerges
 - What is the science equivalent?
- The DropBox lesson
 - Simple interfaces are much more powerful than complex ones
 - API public

Sociology

- Broad sociological changes
 - Convergence of Physical and Life Sciences
 - Data collection in ever larger collaborations
 - Virtual Observatories: CERN, VAO, NCBI, NEON, OOI,...
 - Analysis decoupled, off archived data by smaller groups
 - Emergence of the citizen/internet scientist

- ∘ Π-shaped vs I-shaped people
- Early involvement in "Computational thinking"

Summary

- Science is increasingly driven by data (large and small)
- Large data sets are here, COTS solutions are not
- Analyzing large data requires a different approach
- We need new instruments: "microscopes & telescopes" for data
- Changing sociology
- From hypothesis-driven to data-driven science
- Same problems present in HPC data
- A new, Fourth Paradigm of Science is emerging...

