

Center for Extreme Data Management, Analysis, and Visualization

Big Data Analytics for Science Discovery

Valerio Pascucci

Director, Center for Extreme Data Management Analysis and Visualization Professor, SCI institute and School of Computing, University of Utah

Laboratory Fellow, Pacific Northwest National Laboratory

Massive Simulation and Sensing Devices Generate Great Challenges and Opportunities

Center for Extreme Data Management, Analysis, and Visualization

- 10 Faculty + scientists, developers, students, ...
- Primary partners: UU & PNNL
- Other partnerships: NSA, INL, LLNL, ANL, Battelle,

daho National Laborato

Involvement in national Initiatives

aboratories

\$1.6B NSA data center (1.5 million-square-foot facility)

The Information Big Bang Has Come!

Sources: Lesk, Berkeley SIMS, Landauer, EMC

YEAR

Are We Hopeless ?

SECTION UNIVERSITY Pacific Northwest

Pascucci-11

UNIVERSITY Pacific Northwest

Pascucci-12

THI UNIVERSITY OF UTAH NATIONAL LABORATO

Pascucci-13

SCENERAL DE CONTRAL LABORATO

E=mc²

Multiresolution vs Ab

Abstraction

Multiresolution vs

Abstraction

unu. Sege

Multiresolution vs

Abstraction

FLOWERS

Abstractions Have Been Used in Science Discovery/Communication for a Long Time

Abstraction

Tetrahedrane

 C_4H_4

Abstractions Have Been Used in Science Discovery/Communication for a Long Time

Abstraction

C₄H₄ Tetrahedrane

Language

Topology is and Effective Language to Describe Abstractions of Features from Raw Data

Hierarchical topology of a 2D Miranda vorticity field

Our Framework is Based on Robust Topological Computations for Quantitative Data Analysis

- Provably robust computation
- Provably complete feature extraction and quantification
- Hierarchical topological structures used to capture multiple scales
- Error-bounded approximations associated with each scale
- Formal mathematical definition associated with each analysis
- Scalable performance in association with streaming techniques

Hierarchical topology of a 2D Miranda vorticity field

Molecular dynamics simulation (left) with abstract graph representation of its features at two scales (right)

We Adopted a Combinatorial Approach to Morse Theory for Provably Correct Computations

		A SSS
	Classical mathematical definitions	Simulation of differentiability
domain	D smooth manifold	S simplicial complex
function	f infinitely differentiable	$F(x)$ PL-extension of $f(x_i)$
critical point	numerical	combinatorial
	1D 2D	3D
Independent local computation yield globally consistent results		

UNIVERSITY Pacific Northwes

We Introduced the Morse–Smale Complex for Complete Data Analysis

- The Morse–Smale complex partitions the domain of *f* in regions of uniform gradient
- Generalizes the notion of monotonic interval
- Dimension of a region equal index difference of source and destination
- Remove inconsistency of local gradient evaluations

3C

2D

1D '

Demo C_4H_4

We Use Cancellations to Create a Multi-scale Representation of the Trends in the Data

Cancellations:

Approximation: Multi-scale: critical points can be created or destroyed in pairs that are connected 1-manifolds error = persistence/2 (proven lower bound) consistent gradient segmentation at all scales

persistence p \downarrow \leftrightarrow 1D: cancellation=contraction

2D: cancellation=contraction + edge removal

3D

Time

Demo S3D Combustion Simulation

Big Data Analytics Success Stories

Count the Number of Bubbles in a Rayleigh–Taylor Instability

Rayleigh-Taylor instabilities arise in fusion, super-novae, and other fundamental phenomena:

- start: heavy fluid above, light fluid below
- gravity drives the mixing process
- the mixing region lies between the upper envelope surface (red) and the lower envelope surface (blue)
- 25 to 40 TB of data from simulations

We Analyze High-Resolution Rayleigh–Taylor Instability Simulations

- Large eddy simulation run on Linux cluster: 1152 x 1152 x 1152
 - ~ 40 G / dump
 - 759 dumps, about 25 TB
- Direct numerical simulation run on BlueGene/L: 3072 x 3072 x Z
 - Z depends on width of mixing layer
 - More than 40 TB

- Bubble-like structures are observed in laboratory and simulations
- Bubble dynamics are considered an important way to characterize the mixing process
 - Mixing rate = $\partial (\#bubbles) / \partial t$.
- There is no prevalent formal definition of bubbles

We Compute the Morse–Smale Complex of the Upper Envelope Surface

 $F(\mathbf{x}) = \mathbf{z}$

F(x) on the surface is aligned against the direction of gravity which drives the flow Morse complex cells drawn in distinct colors In each Morse complex cell, all steepest ascending lines converge to one maximum

Maximum

A Hierarchal Model is Generated by **Simplification of Critical Points**

- Persistence is used to produce coarse segmentations
- Coarse scales preserve high-persistence critical points

First Robust Bubble Tracking From Beginning to Late Turbulent Stages

First Time Scientists Can Quantify Robustly Mixing Rates by Bubble Count

We Provide the First Quantification of Known Stages of the Mixing Process

We Provided the First Feature-Based Validation of a LES with Respect to a DNS

VERSITY Pacific Northwest

Quantitative Analysis of the Impact of a Micrometeoroid in a Porous Medium

- Many possible applications:
 - NASA's Stardust Spacecraft
 - National Ignition Facility Targets
 - Light and Robust Materials
 - many more...

Northwest

The Topological Reconstruction Method is Validated with a Controlled Test Shape

Challenge: robust reconstruction of the structure of a porous medium

Preparation: we develop control test data to validate the approach

We Report the Distribution of Topological Features in the Full Resolution Data

The Hierarchical Morse-Smale Complex Has Very Good Reconstruction Properties

We Compute the Complete Morse-Smale Complex for the Porous Medium

Need to Find Proper Threshold Values and Characterize the Stability of the Solution

UNIVERSITY Pacific Northwest

Need to Find Proper Threshold Values and Characterize the Stability of the Solution

Pascucci-49

We Obtain a Robust Reconstruction of the Filament Structures in the Material

Pascucci-50

Demo Porous Medium

CEDMAV

The Extracted Structures Allow to Quantify the Change in Porosity of the Material

Density profiles

Decay in porosity of the material

Metric	t=500	t=12750	t=25500	t=51000
# Cycles	762	340	372	256
Total Length	34756	24316	23798	18912

Understanding Turbulence for Low Emission, High Efficiency Combustion

Experiment

Simulation

- Lean premixed H₂ flames
- Low Swirl Combustion (LSC) Burners
- <u>Low pollution</u> in energy production
- <u>High Efficiency</u> in fuel consumption
- Scalable from residential to industrial use
- Each variable 3.9-4.5 TB

1" burner (5 kW, 17 KBtu/hr)

28" burner (44 MW, 150 MBtu/hr)

SCOTTAN UNIVERSITY Pacific Northwest

We Take on the Challenge of Developing a Quantitative Analysis Detecting Turbulence

Understanding combustion processes over a broad range of burning conditions is an important problem for designing engines and power plants.

- Simulation with AMR mesh.
- Simulations of lean premixed hydrogen flames with three degrees of turbulence.
- Can we identify precisely and track in time burning regions?
- Can we discriminate the degree of turbulence from a quantitative analysis?

Each Set of Parameters Results in a Robust Segmentation and Tracking of Burning Cells

Topological Segmentation Allows to Quantify Turbulence as Slope of the Area Distributions

Exploration of High Dimensional Functions for Sensitivity Analysis

Integrated presentation of statistics and topology

Analysis of Combustion Simulations

Combustion Simulation of Jet CO/H2-Air Flames

Input: Composition of 10 chemical species

Output: Temperature

The Framework Allows Detailed Visualization and Analysis of High Dimensional Functions

10 dimensional data set describing the heat release wrt. to various chemical species in a combustion simulation

Pure fue
The Framework Allows Detailed Visualization and Analysis of High Dimensional Functions

10 dimensional data set describing the heat release wrt. to various chemical species in a combustion simulation

Pure oxidizer

The Framework Allows Detailed Visualization and Analysis of High Dimensional Functions

heat release wrt. to various chemical species in a combustion simulation

CEDMAV

1791.80

0.19 (1010

0.00

475.98

Combustion Simulation of Jet CO/H2-Air Flames

Input: Composition of 10 chemical species

Output: Temperature

Analysis of Climate Data

Community Atmosphere Climate Model

Input: 21 parameter settings

Output: Net long wave flux (thermal radiation)

The Framework Reveals Relationship Between Convection and Global Long Wave Flux

Community Atmosphere Climate Model

Input: 21 parameter settings

Output: Net long wave flux (thermal radiation)

Data Analysis and Visualization Center is a Catalyst for a Virtuous Cycle of Collaborative Activities

Pascucci-81

- Tight cycle of :
 - basic research,
 - software deployment
 - user support
- Coordination among many projects:
 - unified techniques for several applications
- Strong University-Lab-Industry collaboration
- Focused technical approach:
 - performance tools for fast data access
 - general purpose data exploration
 - error bounded quantitative analysis
 - feature extraction and tracking
- Interdisciplinary collaboration with domain scientists (from math to physics):
 - motivating the work
 - formal theoretical approaches
 - feedback to specific disciplines

